DEEPEND Blog

Researcher blog

  • Home
    Home This is where you can find all the blog posts throughout the site.
  • Categories
    Categories Displays a list of categories from this blog.
  • Tags
    Tags Displays a list of tags that have been used in the blog.
  • Bloggers
    Bloggers Search for your favorite blogger from this site.
  • Team Blogs
    Team Blogs Find your favorite team blogs here.
  • Login
    Login Login form
Subscribe to this list via RSS Blog posts tagged in Gulf of Mexico

Posted by on in News

Hi everyone!

My name is Nina Pruzinsky. I am a Master’s student at Nova Southeastern University, where I am working under Dr. Tracey Sutton. Also, I am a graduate research assistant in Dr. Sutton’s Oceanic Ecology Lab, where I am studying the identification and spatiotemporal distributions of tuna early life stages (larvae and juveniles) in the Gulf of Mexico. 

Tuna are ecologically, economically and recreationally important fishes. You may know them for their large size, high speeds, and highly migratory behaviors. Fishermen enjoy catching these are fish because they average 2.5 m in size and 250 kg in weight!! They are top-predators in many coastal and oceanic environments, feeding on fish, squid and crustaceans.

Check out this video of tuna from the Blue Planet II series.

Several species have been placed on the IUCN Red List of Threatened Species. For example, Northern Atlantic bluefin tuna is listed as endangered, yellowfin and albacares as near-threatened, and bigeye as vulnerable. Several tuna species spawn in the Gulf of Mexico due to its warm temperatures and unique hydrographic features improving the survival of their eggs and larvae.

So what exactly am I studying for my thesis?

First, I am identifying features that describe the early life stages of different tuna species. The morphology (“the study of form” or appearance of physical features) of tuna early life stages is poorly-described. Collecting fishes at these small size classes (3-125 mm SL) is very rare due to limited sampling across their wide-range of habitats. However, it is extremely important because if we do not know how to identify a fish when it is young, we cannot protect it and ensure it lives to its adult reproductive stage. So, my first task was to create an identification guide for these small fishes. The key features used for identification include: pigmentation patterns, body shape, ratios of different body parts, and fin ray counts.

To date, I have identified 11 different tuna species. These include: little tunny, blackfin tuna, bluefin tuna, yellowfin tuna, frigate tuna, bullet tuna, skipjack tuna, wahoo, Atlantic chub mackerel, Atlantic bonito, and king mackerel. Pictures of these fishes are included below. You can see how differently their early life stages look compared to their adult stages.

b2ap3_thumbnail_Tatlanticus1.jpg

Larval and adult little tunny.

b2ap3_thumbnail_Ealletteratus1.jpg

Larval and adult blackfin tuna.

b2ap3_thumbnail_Scavalla1.jpg

Larval and adult king mackerel.

b2ap3_thumbnail_Asolandri1.jpg

Larval and adult wahoo.

 

The second part of my project is to identify the spatiotemporal distributions of larval and juvenile tunas. Once we know what species we have, then we can identify where it is found, in what season it spawns, what type of environmental features it prefers, and so on. Basically, I am gaining knowledge about its habitat preferences, so we can help protect future populations and increase recruitment levels.

There are some small tuna species such as little tuna and blackfin tuna that do not have stock assessments nor management plans currently developed. Thus, learning about the environmental conditions that affect their distributions is essential in assessing their populations. It is evident that we still have a lot of knowledge to gain about these size classes.
b2ap3_thumbnail_G0198788.JPGb2ap3_thumbnail_IMG_6013.JPGb2ap3_thumbnail_microscope1.jpg

This summer, I participated in an ichthyoplankton cruise in the Gulf of Mexico. Left: Jason and I are collecting organisms from the bongo net. Middle: I am holding a juvenile frigate tuna collected with a dipnet. Right: I am identifying a larval tuna under the microscope in the lab onboard.

 

Last modified on

Howdy! My name is Ryan Bos and I am here to aid in the fight against plastic! I am a Masters Candidate in Marine Science at Nova Southeastern University working with Dr. Tamara Frank and Dr. Tracey Sutton. Currently, I am doing an appraisal of microplastic ingestion in deep-sea fishes and crustaceans in the Gulf of Mexico (GoM). 

Each day, nearly every person on Earth uses plastic items. It is all around us. It is in our clothes, cosmetics, vehicles, and if you carry a smartphone around with you, odds are that it has a plastic component. As humans, we manufacture and use plastic at alarming rates, and take it for granted. Plastic production is projected to increase with increases in the human population, yet plastic pollution is already infesting our oceans and will continue to persist for hundreds to thousands of years because of plastic’s inherent resiliency. I want to put the plastic crisis we are facing into perspective.  There are ~34,000 extant species of fishes with the most abundant genus of fish, Cyclothone, consisting of 13 species. These 13 species are comprised of an estimated 1,000,000,000,000,000 individuals. By the year 2050, the number of fishes in our oceans will be equal to the number of plastics. What’s alarming about this statistic other than the number of fishes and plastic particles being equal? There are 33,987 more species that contribute to the total number of individual fish in our oceans, and most of these plastic particles can’t be seen with the naked eye!

Microplastics, as the name implies are small pieces of plastic that range in size from 1 - 5 mm that are categorized as being a fragment, film, spherule, foam, or fiber. These five categories can be further broken down into subcategories known as mini-microplastics that range in size from 1 µm - 1 mm and are named microfragments, microfilms, microbeads, microfoams, and microfibers. Once ingested, an animal may experience pseudosatiation (the feeling that they are full but have not received any nutrition), obstruction of feeding appendages, decreased reproductive fitness, and death. Pictures of these categories are portrayed below *excluding foams*. To determine if a particle is a piece of plastic, we are using what’s called the ‘hot-needle, or burn-test’. It is a rapid and cost-effective technique for plastic determination. If plastic is probed with a hot-needle it either leaves a burn mark, melts, or in the case of fibers, curls up or is repelled from the needle.

                                                                 

b2ap3_thumbnail_top1.jpgb2ap3_thumbnail_top2.jpgb2ap3_thumbnail_top3.jpgb2ap3_thumbnail_top4.jpg

Pictured from left to right: Fragment, film, spherule, fibers

 

b2ap3_thumbnail_bottom1_20180205-001554_1.jpgb2ap3_thumbnail_bottom2_20180205-001555_1.jpgb2ap3_thumbnail_bottom3_20180205-001555_1.jpgb2ap3_thumbnail_bottom4.jpg 

Pictured from left to right: Microfragment, microfilm, microbead, microfibers

 

Deep-sea animals are integral parts of pelagic ecosystems, as they serve as the base of the food web, contribute significantly to the overall abundance and biomass, make substantial contributions to carbon flux, and serve as a link between shallow and deep-pelagic waters. Regrettably, there are no previous estimates of microplastic ingestion by deep-sea fishes and crustaceans in the GoM. We discovered that approximately 28% of fishes (69/245) and 28% of crustaceans (83/292) have been shown to ingest at least one piece of plastic with 7% ingesting two or more pieces! One individual Sternoptyx diaphana (diaphanous hatchetfish) and Stylopandalus richardi ingested five spherules and six fibers, respectively!

 

b2ap3_thumbnail_argyropelecus.jpg b2ap3_thumbnail_shrimp-spewing-biolum.jpg b2ap3_thumbnail_dragonfish.jpg

Pictured from left to right: (Left): Two beautiful deep-sea hatchetfish (Argyropelecus aculeatus) that use photophores (light-producing cells) to counterilluminate rendering themselves less visible to predators lurking below. (Middle): A stunning shrimp (Oplophorus sp.) that can produce a bioluminescent spew (vomit) as a defense to distract potential predators. The spew can adhere to predators, which makes them visible to any other predators in the area. (Right): A formidable deep-sea dragonfish (Idiacanthus fasciola) with a smile not just used for good looks! This dragonfish and many other deep-sea piscivores (fish eaters) possess recurved teeth for capturing prey and not letting them go!

 

Our data reveal that more scrutiny should be given to deep-sea ecosystems with regards to plastic ingestion. Deep-sea food webs are largely understudied and have a stunning complexity to them. These food webs are understudied because of the enormous expense and difficulty of obtaining deep-sea samples. This makes the DEEPEND Consortium incredibly important for gathering these data and beginning to develop a story of community dynamics in the GoM.

 

A resource for learning more about plastic: https://marinedebris.noaa.gov/info/plastic.html

A brilliant new way to aid in the fight against plastic by doing laundry: https://coraball.com/

If you are interested in learning more about our work or how to aid in the fight against plastic, please don’t hesitate to get in touch with me by email: This email address is being protected from spambots. You need JavaScript enabled to view it.

 

Last modified on